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Abstract

A novel approach for the analysis of self-excited instabilities in thermo-acoustic systems is proposed. Combining com-
putational fluid dynamics with low-order acoustic modeling, the open-loop transfer function of the system under investi-
gation is computed. The system eigenmodes and the linear stability characteristics are then deduced from a Nyquist plot.

The method is suitable for systems where – due to geometrical complexities or non-compact regions of heat release – a
low-order formulation is not appropriate or not available. Explicit knowledge of the frequency response or the transfer
matrix of the heat source is not required. Further advantages of the new approach are discussed in the paper.

To establish proof of concept, the method is validated against a simple model of a Rijke tube. Over the frequency range
considered, frequencies and growth rates of stable as well as unstable eigenmodes are predicted accurately. The new
method, combining flow simulation, low-order acoustic modeling and control theory, makes possible a comprehensive
analysis of acoustic stability behavior of complex thermo-acoustic systems at comparatively modest computational cost.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Research on self-excited thermo-acoustic instabilities, a phenomenon arising primarily from the interaction
of acoustic waves and unsteady heat release in a compressible fluid, has a long and multifaceted history [1–4].
In combustion applications, thermo-acoustic instabilities are in general an undesirable phenomenon and can
lead to excessive emissions of noise and pollutants or even structural damage [5–10].

It is the goal of ongoing research to identify instability mechanisms, determine stability limits and evaluate
the effectiveness of counter measures in early design stages of a combustor. Unfortunately, the experimental
investigation of combustion instabilities in scaled-down test rigs delivers often at considerable cost only very
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limited insight. Consequently, various methods for semi-analytical or numerical analysis of thermo-acoustic
systems have been developed.

For example, with computational fluid dynamics (CFD) it is possible to simulate the temporal development
of low-amplitude, random perturbations imposed on a steady solution of the flow equations. If the system
considered is linearly unstable, perturbation amplitudes will grow with time and develop into an oscillatory
mode with distinct frequency, eventually evolving into a limit cycle. In this way one can assess the thermo-
acoustic stability of a combustor, even without explicit knowledge of the frequency response of the flame
or the transfer matrix of the burner [11–13]. However, there are significant problems with the formulation
of appropriate boundary conditions, which should provide a consistent formulation for the mean flow, give
the correct acoustic impedance and in addition be numerically robust [14,15]. A further drawback is that with
this approach only the dominant unstable mode is found. Unstable modes with smaller growth rates or stable
modes cannot be identified. Finally, the required compute resources are immense, especially for practical
geometries.

To circumvent these difficulties, various hybrid methods for the analysis of thermo-acoustic instabilities
have been developed in recent years, which follow a strategy of ‘‘divide and conquer”: efficient models for
the system acoustics are combined with a parametrized, low-order description of the response of the heat
release rate to flow perturbations. Typically, the latter is formulated in terms of the frequency response or
the transfer matrix of the heat source of the system, obtained from experiment or computational fluid
dynamics.

The following approaches can be distinguished:

� Low-order models or ‘‘network models” are popular because they are fast and flexible and provide physical
insight [6,8,16–18]. However, the applicability to complicated geometries or distributed regions of heat
release is limited.
� Finite element or finite volume formulations for the wave equation – or, more generally speaking, acoustic

perturbation equations – do not suffer from that shortcoming [19–21]. On the other hand, compute require-
ments are higher, the implementation of acoustic boundary conditions can be difficult, and it may not be
possible to take into account mean flow effects.
� Galerkin or state–space techniques, which rely on expansion of the acoustic field in terms of a set of basis

functions, share some of the advantages as well as disadvantages with alternative approaches [22–24].

It is emphasized that all these methods do not compute the response of the flame (in general: the heat
source) to perturbations of the flow. Instead, information about the flame dynamics is required input for these
models, and is typically provided in terms of the frequency response of the flame. The frequency response is in
simplest terms defined as the normalized response of the overall heat release rate _Q of the flame to a pertur-
bation of the flow velocity uc at a reference location upstream of the flame (typically at the burner mouth, say):
F ðxÞ �
b_Q= _Q
ûc=�uc

: ð1Þ
However, for combustor configurations of practical interest, a frequency response as defined in the above
equation does not always provide an appropriate characterization of the flame dynamics. Firstly, it has been
pointed out that the reference location should be chosen with care, otherwise the transfer function as defined
above does not provide a description of flame dynamics that is independent of the combustor impedance [25].
Secondly, for acoustically non-compact flames (spatial extent of the region of heat release is comparable to
relevant acoustic wave lengths), a local response F ðx;~xÞ should be used [21,26–28] instead of a global fre-
quency response F ðxÞ. Furthermore, if the fuel injector is not acoustically decoupled from the combustion
chamber, a premix flame can in general not be represented as a single-input/single-output element and an ex-
tended description must be developed. For example, it has been suggested to employ a multiple-input/single-
output flame transfer function, or instead the acoustic transfer matrix of burner and flame [29–33].

The accurate and efficient determination of flame transfer functions or burner transfer matrices by analyt-
ical methods, experiment or computation is a challenging task and the topic of several ongoing research pro-
jects [21,28,33–39].
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In this paper, an alternative method for stability analysis is proposed, which does not require explicit
knowledge of the frequency response of the heat source (and indeed does not make a priori assumptions about
the input/output structure of the flame dynamics model): An unsteady flow simulation with broad-band exter-
nal excitation is linked to a network model in order to compute the open-loop transfer function (OLTF) of the
thermo-acoustic system. The stability characteristics of the system are then deduced from the OLTF with
graphical methods familiar from control theory, i.e. interpretation of the Nyquist plot [40–44]. As the pro-
posed method integrates computational fluid dynamics, network modeling and the stability criterion of
Nyquist, it shall be referred to as the ‘‘CNN”-approach in the following.

The motivation of the present paper is to introduce the new approach and to establish proof of concept for
the method. First, the Nyquist stability criterion and its adaptation to thermo-acoustic stability analysis [42–
44] are reviewed. Readers who are familiar with the Nyquist criterion, as it is taught in every course on control
theory, may skip the next sub-section and continue reading in Section 2.2, where the application of the
Nyquist criterion to thermo-acoustic systems is discussed. Then it is described, how computational fluid
dynamics and low-order network modeling are combined to determine the OLTF of the thermo-acoustic sys-
tem. Results of a validation study are presented in the following section, based on a simple model of a Rijke
tube. This is a ‘‘classical” thermo-acoustic system which has been investigated as early as 1859 [1,45,46]. For
this simple system, semi-analytical results obtained with a network model may be considered as an exact ref-
erence solution.

Further possible areas of application, which go beyond this simple system, and expected benefits of the
CNN approach are discussed briefly. Validation against numerical or experimental results for more realistic
configurations including combustion is the subject of ongoing work and shall be presented elsewhere.

2. The Nyquist stability criterion

The Nyquist stability criterion is a well-known tool in control theory. It allows to test for stability of a
closed-loop system by inspection of the ‘‘Nyquist plot” of the open-loop transfer function (OLTF) [41]. In this
section, a brief review of the method is given, then the application to a thermo-acoustic system is discussed.

2.1. Review of stability analysis with Nyquist plots in control theory

Consider a system as shown in Fig. 1 with open-loop transfer function GðsÞ and unit negative feedback
HðsÞ ¼ 1, such that
x1 ¼ GðsÞðx0 � x1Þ; ð2Þ

and therefore
x1 ¼
GðsÞ

GðsÞ þ 1
x0: ð3Þ
The characteristic equation, from which stability can be deduced, is then
GðsÞ þ 1 ¼ 0: ð4Þ

The system is stable, if all the roots sn of this equation are located in the left half of the complex plane. In that
case, all perturbations of the system will decay exponentially � est with time.
G(s)

1

x1x0

Fig. 1. Open-loop system with unit negative feedback.
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Fig. 2. Network model of a combustion system comprised of air supply (‘‘plenum”), burner, flame and combustor. The unknowns of the
model are the characteristic wave amplitudes fi and gi at the ‘‘nodes” of the network. Boundary conditions can be expressed as reflection
coefficients riðxÞ ¼ f̂ 1=ĝ1 at the inlet and roðxÞ ¼ ĝ5=f̂ 5 at the outlet, respectively.
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To locate all the roots can be tedious, therefore alternative methods to assess the stability have been devel-
oped. For example, in control theory the transfer function is usually a fraction of polynomials
1 Str
comple
back t
GðsÞ ¼ P N ðsÞ
P DðsÞ

¼ ansn þ � � � þ a0

bmsm þ � � � þ b0

: ð5Þ
The Routh–Hurwitz stability criterion exploits this fact and allows to determine system stability from the poly-
nomial coefficients [41].

Alternatively, one can deduce stability from the Nyquist plot, i.e. a polar plot of the imaginary axis1 mapped
through the open-loop transfer function. The associated Nyquist stability criterion is based on Cauchy’s argu-
ment principle, which states the following: Consider an analytical function f ðzÞ with a number Z of zeros

f ðzÞ ¼ 0 and a number P of poles f ðzÞ ! 1 within a simple closed contour C in the complex plane. Then the

winding number of the image curve of the contour C mapped f ðzÞ around the origin 0þ i0 is equal to Z � P .

For the characteristic equation (4) and the Nyquist plot, Cauchy’s argument principle implies that the num-
ber Z of zeros of the OLTF GðsÞ in the right half of the complex plane is related to the number N of positive
encirclements (i.e. in clockwise direction) of the ‘‘critical point” �1 and the number of poles P of GðsÞ as
follows:
N ¼ Z � P : ð6Þ

For a stable system, no roots of the characteristic equation (4) should be on the right side of the s-plane, i.e.
Z ¼ 0. Nyquist’s criterion follows with Eq. (6): for stability, the number N of anticlockwise encirclements about

the critical point �1 must be equal to P, the number of open-loop poles in the right half plane.

2.2. Application of the Nyquist criterion to thermo-acoustic systems

It is by no means obvious how the Nyquist criterion can be employed to analyse the stability of thermo-
acoustic systems. In this section, the network-model-based approach for generation of a Nyquist plot pro-
posed by Polifke et al. is reviewed [42,43].

A linear network-model as sketched in Fig. 2 comprises a number of two-ports, each of them representing a
discrete element of the system. Mathematically, each two-port is described by a transfer matrix, with the
matrix coefficients linking the acoustic variables ðp0=.c; u0Þ – or equivalently the characteristic wave amplitudes
ðf ; gÞ, see Section 5 for definitions – at the ports of the element. This formulation, complete with appropriate
boundary conditions at the terminations of the network, results in a homogeneous system of equations
S~x ¼ 0 ð7Þ

with the vector of unknowns~x ¼ ðf̂ 1; ĝ1; . . . ; ĝNÞ, see [6–8,16,43] for details and examples. Solutions of the sys-
tem, i.e. eigenmodes with frequency xn, are found by computing the roots of the characteristic equation
DetðSÞ ¼ 0.

The eigenfrequencies are in general complex-valued, the imaginary part of the eigenfrequencies determines
stability: With time dependence � eixt, a positive imaginary part IðxnÞ corresponds to exponential decay of
ictly speaking, the Nyquist plot is the image of the Nyquist contour, which is a closed contour encompassing the right half of the
x plane. Starting from �i1 one moves along the imaginary towards þi1 and then in a clockwise circular arc with radius r!1

o the point �i1.
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Fig. 3. Diagnostic dummy.
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the nth eigenmode, i.e. stability, and vice versa for an unstable eigenmode. A growth rate or cycle increment of
mode n can be derived from the eigenfrequency:
2 Inc
C � exp �2p
IðxÞ
RðxÞ

� �
� 1: ð8Þ
The growth rate indicates by which amplitude ratio a mode increases or decreases per cycle. For example, a
growth rate of C ¼ 0:2 indicates an increment of the amplitude of 20% per cycle.

To establish an analogy to control systems and to define the equivalent to the open-loop transfer function,
the network model must be ‘‘cut open”. Polifke et al. have shown how this can be done for networks of arbi-
trary topology by introducing a ‘‘diagnostic dummy” element in the network [42,43]. As indicated in Fig. 3,
two of the four variables are simply linked across the two-port, e.g. ĝd ¼ ĝu, while the second pair of variables
is not connected. Note that by inserting the diagnostic dummy, the homogeneous system of Eqs. (7) changes
into an inhomogeneous system S0~x0 ¼ b with r.h.s. b ¼ ð0; . . . ; 1; . . . ; 0Þ. Now one can define the OLTF of the
thermo-acoustic system with diagnostic dummy as
GðxÞ ¼ � f̂ u

f̂ d

: ð9Þ
The minus sign is introduced to maintain close analogy with negative feedback control systems.
In general, i.e. for arbitrary frequency x, the solution~x0ðxÞ of the inhomogeneous system with diagnostic

dummy will not be equal to any of the eigenmodes of the original system Eq. (7). In this case the values of the
unconnected variables across the diagnostic dummy will not be equal, i.e. f̂ d 6¼ f̂ u. However, for every eigen-
frequency xn, the solutions~x0ðxnÞ of the system with diagnostic dummy will be identical to the corresponding
eigenvector~xn of the original system (up to an arbitrary scaling factor), and the acoustic variables will match
across the ‘‘cut”, f̂ d ¼ f̂ u. It follows that Eq. (9) defines a mapping, which maps every eigenmode of the homo-
geneous system Eq. (7) to the critical point �1, i.e. GðxnÞ ¼ �1 for every eigenfrequency xn. This important
property of the OLTF will be exploited in the following.

Although the equivalent to the open-loop transfer function is now defined, the classical Nyquist criterion,
as it was formulated in the previous section, is not directly applicable to a thermo-acoustic system: As already
mentioned, low-order models for thermo-acoustic stability analysis are commonly formulated with harmonic
time dependence � eixt, and the imaginary part of the angular frequency x determines stability. For a stable
system, no eigenfrequencies xn must be located in the lower half of the complex plane. This implies for the
Nyquist plot, that the real axis of the x-plane is mapped by the open-loop transfer function to the GðxÞ-plane.

Once these modifications are taken into account, one could in principle proceed with application of the cri-
terion in complete analogy to control theory. However, transfer functions in thermo-acoustics are in general
not polynomials in x or fractions thereof, but involve harmonic or exponential functions.2 The identification
of poles is in this case no easier than the determination of eigenfrequencies by iterative numerical solution of
the characteristic Eq. (4). Moreover, the coefficients of acoustic transfer matrices – the building blocks of net-
work models – are not always given in analytical form. In this case, the OLTF cannot be evaluated for com-
plex-valued frequencies with imaginary part IðxÞ 6¼ 0. These difficulties are also discussed in [42,43].

Therefore, a modified rule for the interpretation of Nyquist plots has been put forward, which is more suit-
able for application to thermo-acoustic systems [42,43]. The proposed rule is based on a property of analytical
functions: An analytic function is conformal, i.e. it preserves local angles or ‘‘handedness”, at any point where
identally, for this reason application of the Routh–Hurwitz criterion to thermo-acoustic systems is not possible.



Fig. 4. Conformal mapping x! GðxÞ of the real axis under the OLTF for an unstable eigenfrequency.

J. Kopitz, W. Polifke / Journal of Computational Physics 227 (2008) 6754–6778 6759
it has a non-zero derivative [47]. Consider now the open-loop transfer function GðxÞ as a conformal mapping
from the x-plane onto the G-plane, see Fig. 4. The real axis IðxÞ ¼ 0 in the x-plane (left graph) and its image
in the G-plane (right graph) are indicated by the thick dashed line with arrow head. According to Eq. (9), the
eigenfrequencies (roots of the characteristic Eq. (4)) xn are mapped to the critical point �1. Because the con-
formal mapping x! GðxÞ preserves handedness, the �1 point will lie to the left (right) of the image curve of
the real axis if the corresponding root xn lies in the upper (lower) half of the complex x-plane. The situation
shown in Fig. 4 corresponds to an unstable mode.

These deliberations suggest the following modified Nyquist criterion: Consider the image curve of the posi-
tive half of the real axis x ¼ 0!1 under the OLTF mapping in the GðxÞ-plane, as shown in Fig. 4. As one
moves along the image curve in the direction of increasing frequency x, an eigenmode with eigenfrequency xn

is encountered each time the image curve passes the critical point �1 (in Fig. 4, only one sweep past an eigen-
frequency is shown). If the critical point lies to the right of the image curve, the eigenmode is unstable, because
then its frequency xn is located below the real axis in the x-plane. On the other hand, if the critical point is
located to the left, the eigenmode is stable. If the image curve passes through the critical point, the mode is
neutrally stable.

In comparison to the classical Nyquist stability criterion, it is perhaps easier to foster an intuitive under-
standing of the modified Nyquist rule. However, it is admitted that no strict mathematical proof for the mod-
ified criterion is known. It has been validated successfully for a number of cases, where eigenfrequencies and
growth rates can be determined by solution of the characteristic equation [42,43]. Nevertheless, one must con-
cede that erroneous predictions may be obtained if the derivative of the OLTF vanishes for some real-valued
frequency x 2 R (the mapping is then not conformal). Furthermore, if an eigenfrequency has a large imagi-
nary part such that the OLTF curve passes the critical point at a large distance, the proposed criterion may fail
because conformality is a local property, i.e. it holds only in a finite-size neighborhood of the point considered.
Fortunately, very large growth rates with IðxÞ � 0 are not observed in realistic network models, while very
large damping rates with IðxÞ � 0 correspond to strongly damped modes, which are of no concern for the
overall stability of a combustion system.

2.3. Identification of eigenfrequencies and growth rates from a Nyquist plot

Conformality, i.e. the local preservation of angles under a mapping f : z! f ðzÞ, implies that an orthogonal
grid of lines with constant real or imaginary part, respectively, is mapped to an orthogonal grid of lines in the
image plane (with the exception of points where the derivative of f is zero). In other words, under a conformal
mapping, the neighborhood of any point is rotated and stretched or shrunk, as illustrated in Fig. 4. [47].

This interpretation of conformality implies that it is possible to estimate the frequency of an eigenmode xn

as well as its rate of growth or decay from the image curve of the OLTF:

1. The real part RðxnÞ of the eigenfrequency is approximately equal to the frequency x, where the distance
between the image curve and the critical point attains a local minimum.
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2. The absolute value of the imaginary part IðxnÞ is approximately equal to the minimum distance from the
critical point to the OLTF image curve divided by the scaling factor of the mapping.

The scaling factor can be determined by evaluating how an interval ðRðxnÞ � Dx; RðxnÞ þ DxÞ, is mapped
to a segment GðRðxnÞ � DxÞ ! GðRðxnÞ þ DxÞ of the OLTF image curve. The scaling factor is then esti-
mated as the arc length divided by 2Dx in the limit Dx! 0. This geometrical approach for determining
growth rates is particularly convenient if the OLTF is known in analytical form and can be evaluated contin-
uously as a function of frequency x. Further details on the procedure and example results for a semi-analytical
test case are presented in Appendix C.

An alternative way of deducing the growth rate from the image curve has been proposed by Sattelmayer
and Polifke, based on the identity theorem of functional analysis [44]. The theorem assures that a polynomial
fit for the OLTF, which approximates the transfer function GðxÞ with good accuracy for a range of purely real
frequencies x1 6 x 6 x2, with x;x1;x2 2 R, will locally approximate the OLTF also for complex-valued fre-
quencies x 2 C. This suggests to determine the growth rate of an eigenmode as follows: generate a polynomial
fit P G;mðxÞ ¼ gmxm þ � � � þ g0 which approximates the OLTF curve close to the critical point, i.e. in the vicinity
of an eigenmode xn, see Fig. 4. Then the frequency x	 for which the approximating polynomial P Gðx	Þ ¼ �1
is determined with a numerical root finding algorithm. If the eigenmode xn is not too far away from the real
axis, then xn 
 x	 with good accuracy. This approach is particularly convenient, if the OLTF is not known as
a continuous function of frequency x, but for a range of discrete frequencies, as it is the case for the OLTF
derived from CFD simulation in the present work.

With the modified Nyquist criterion, complex-valued eigenfrequencies of an acoustical system can be deter-
mined from the OLTF image curve, which is computed for purely real frequencies x 2 R. This is very conve-
nient when analytical expressions for transfer matrix coefficients are not known, which is usually the case for
transfer matrices or response functions determined from experiment.

In concluding this section we remark that with the proposed rule for interpretation of Nyquist plots, it is
obvious that the frequency at which the OLTF curve crosses the real axis should not be identified with an
eigenfrequency. Indeed, it has been shown by example that this popular, but incorrect ‘‘heuristic” version
of the Nyquist criterion does lead to erroneous predictions [43,48].

3. CFD-based determination of the open-loop transfer function

In the previous section it has been reviewed how the stability of a thermo-acoustic system can be deduced
from a Nyquist plot. The Nyquist plot is usually generated from a network model of the system, which is ‘‘cut
open” such that the open-loop transfer function can be computed from the model. This of course presumes
that the transfer matrices of all two-ports, which comprise the system, are known. However, analytical expres-
sions for transfer matrices are only known for particularly simple geometries. The determination of transfer
matrices from experiment or CFD, on the other hand, is difficult, error-prone and time-consuming [35,36,49].

In this section a hybrid method, combining CFD and network models, for computation of the OLTF is
introduced. The approach is suitable for systems where a complete low-order network formulation is not
appropriate or not available – due to geometrical complexities or non-compact regions of heat release, etc.,
or simply because not all required transfer matrices are explicitly known. It is emphasized that it is not the pur-
pose of the CFD model to determine two-port transfer matrices or heat source transfer functions (cf. [36,50]).
Indeed, explicit knowledge of these quantities is not required for stability analysis with the Nyquist criterion.

In the following the general strategy of the proposed approach is exemplified by a simple combustion sys-
tem, then expected advantages and areas of application are discussed.

3.1. Outline of the method

Consider a combustion system comprised of a long plenum, burner and combustion chamber as shown in
Fig. 5. The acoustic boundary condition at the upstream end of the plenum is given in terms of a complex-
valued, frequency-dependent impedance ZðxÞ ¼ p̂ðxÞ=ûðxÞ. At the combustor exit, an ‘‘open end” boundary
condition with p0 ¼ 0 is assumed.
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Fig. 5. The hybrid approach for determination of the OLTF. Top: combustion system with plenum, burner, flame, combustion chamber
and combustor exit. Bottom: System-model comprised of CFD-module (left) and network-module (right). The OLTF is obtained as
G ¼ �f̂ u=f̂ d.

J. Kopitz, W. Polifke / Journal of Computational Physics 227 (2008) 6754–6778 6761
For the sake of argument it is assumed that the transfer matrix of the burner and the frequency response of
the flame to acoustic perturbations are not known. In this case, burner and flame as well as the combustor
should be modeled with CFD, using an appropriate formulation for unsteady, turbulent, reacting flow. At
the downstream boundary of the computational domain, i.e. at the combustor exit, a constant pressure
boundary condition is applied. As indicated in Fig. 5, the computational domain of the CFD model begins
at some location xC upstream of the burner. Here boundary conditions are imposed which are acoustically
non-reflecting, and at the same time allow to impose an external perturbation fdðtÞ. If a broad-band excitation
signal is applied, a simulation extending over a few periods of the lowest frequency of interest generates time
series data, which provide after fast Fourier transform (FFT) the acoustic output ĝdðxÞ to the input f̂ dðxÞ.

The ratio ĝdðxÞ=f̂ dðxÞ can be interpreted as the frequency response of burner and combustor (including the
flame), but it must not be identified with the OLTF of the system. Therefore the data from the CFD run alone
are not sufficient to assess the stability of the system. However, modeling the elements upstream of the location
xC with a network model, the response f̂ u to the excitation ĝu ¼ ĝd can be computed. The open-loop transfer
function of the system can now be determined as GðxÞ ¼ �f̂ uðxÞ=f̂ dðxÞ, stability analysis and identification
of eigenfrequencies is then carried out as outlined above. A flow chart of this procedure is shown in Fig. 6. As
in Fig. 5, it is indicated which part of the overall model ‘‘lives” in the time domain and the frequency domain,
respectively.

It should be obvious after what has been said that the interface at xC between the CFD model and the net-
work model is equivalent to the diagnostic dummy of a full network model, i.e. the system is ‘‘cut open” at this
location. It is indeed essential that a part of the system is represented by a network model, such that the ‘‘cut”
can be implemented and an assessment of the stability against self-excited instability be made based on com-
putational results obtained with external excitation.

3.2. Further remarks on the proposed method

In the previous sub-section, the basic idea of the CNN approach has been introduced. The central motiva-
tion for the present paper is to establish proof of concept for the method by validating against a simple test
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case, i.e. a duct with an acoustically compact, time-lagged heat source – similar to a Rijke tube. For such a
system, the eigenmodes and the stability properties may be computed by a simple network model (or even
by a semi-analytical approach, see Appendix C), which is very convenient for a validation study.

However, for a configuration as simple as a Rijke tube, the CNN approach is unnecessarily complicated.
Therefore, we present in the following miscellaneous comments on possible areas of applications and expected
advantages of the CNN approach. At the time of writing, we cannot yet substantiate all the claims made
below, because the application of the method to more realistic configurations – including combustion and
large eddy simulation – is the subject of ongoing work.

� Depending on the problem under investigation, the CNN method can certainly be applied to configurations
other than the one sketched in Fig. 5. It may be appropriate to model the upstream part of the overall sys-
tem in CFD, with the network model representing the downstream part. This could be advantageous, for
example, if a long chimney is located downstream of a combustion chamber. In general, the network sub-
model should be used to represent those parts of the system for which transfer matrices are known. This
could be a tubular or annular combustion chamber, a long chimney, or an air supply duct, etc.On the other
hand, it is readily admitted that there are certainly configurations, for which the CNN method is not suit-
able. One example for this would be geometries so complex that a ‘‘cutting plane” with normal incidence of
acoustic waves cannot be identified.
� It can be expedient to reduce the network model to only the downstream or upstream boundary condition.

In this way, it is not necessary to implement a boundary condition that represents a complex-valued, fre-
quency-dependent impedance or reflection factor in the CFD model.
� Advanced CFD models, in particular large eddy simulation, do in principle take into account all important

flame–acoustics interactions, even vortical or entropy modes. Complicated geometries can be considered
without essential difficulty, as long as they are represented by the CFD sub-model. In this sense, the pro-
posed model is comprehensive.
� The proposed method is also comprehensive in the sense that both unstable as well as stable eigenmodes are

detected. This is an advantage over transient CFD simulation of system development from a perturbed ini-
tial state, where one can identify in general only the dominant unstable mode that develops during the
course of the simulation. Furthermore, for the latter approach it is required to represent the complete sys-
tem in the CFD model. This can be computationally very expensive, and requires to implement the correct
acoustic boundary conditions in the CFD model, which is a difficult problem in its own right.
� A further advantage over transient CFD-simulation from a perturbed initial state is the following: the self-

excited growth of initially small perturbations into a fully developed mode with distinct eigenfrequency can
run over many oscillation cycles, consuming huge amounts of computer resources. On the other hand, with
the CNN approach the external forcing in combination with the non-reflecting acoustic boundary leads to a
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quasi-steady, oscillatory state comparatively quickly. It follows that compute times, which correspond to
only a few cycles of the lowest frequencies of interest, are sufficient to assess the stability of the combustor.
� It is not required that the boundary condition at xC in the CFD model is fully non-reflecting. If there is

partial reflection – which is the case for the widely used characteristics-based boundary conditions proposed
by Poinsot and Lele [14,15] – one simply has to identify acoustic signal components fd; gd propagating in
the upstream and downstream direction, respectively, a short distance away from the boundary of the com-
putational domain.
� It has been proposed to use CFD in combination with tools from system identification (SI) to determine the

frequency response or the transfer matrix of a flame, say, and then use this information to build a complete
system model for stability analysis [21,28,33,36,37,50]. Obviously there are commonalities and important
differences between this ‘‘CFD/SI” approach and the CNN method presented here. The latter could be
more suitable for systems where due to geometrical complexities, multi-stage fuel injection, or acoustically
non-compact regions of heat release, the representation of the flame dynamics as a single-input/single-out-
put flame transfer function is not appropriate. For example, when considering a premix burner with ‘‘prac-
tical premixing” (i.e. the fuel injector is not acoustically decoupled from the combustion chamber), a premix
flame should in general be represented as a multiple-input/single-output (MISO) element [33]. Alterna-
tively, the burner transfer matrix, which is a multiple-input/multiple-output (MIMO) element, can also
be identified. Identification of MISO or MIMO elements generates additional – although not insurmount-
able – complexity for the CFD/SI approach and requires longer times series for robust estimation. Contrary
to that, with CNN the CFD sub-model is always considered as a single-input/single-output (SISO) system,
which should make the determination of the OLTF comparatively robust and computationally less
demanding. Nevertheless, the impact of the fuel injector impedance on the combustion stability, say, should
be taken into account quite naturally, if the fuel injector is part of the CFD sub-model. Further experience
with both the CFD/SI and the CNN method and comparative validation studies are needed to better
understand strengths and weaknesses of the two approaches.
� The CNN approach is also promising for applications involving elements with non-linear transfer-behavior

(e.g. a flame at large amplitudes of oscillation). For this situation, Stow and Dowling [51] have presented a
low-order method which combines a simple non-linear flame model with an otherwise linear network model
of a combustor in order to determine limit cycle amplitudes. The approach is intriguing, but to derive a
realistic non-linear flame transfer function remains a challenging task. With the proposed hybrid approach,
only the part of the system including the non-linear element would be modeled with CFD.

For proof-of-concept of the new hybrid method, it has been applied to a simple, one-dimensional model of
a Rijke tube, cf. [36]. Before representing the results achieved, the physics and the linear stability analysis of a
Rijke tube are reviewed in the next sections.

4. Physics of the Rijke tube

The Rijke tube is perhaps the most simple system that can exhibit self-excited thermo-acoustic instability. It
has been described in great detail in the literature [11,45,46,52,53], only a short summary of the instability
mechanism is given here. A Rijke tube consists of a straight duct with a wire gauze inside. If the wire gauze
is heated – either electrically, or by exposing it to a flame – and air flows through the duct due to free or forced
convection, the Rijke tube can produce intense sound. Acoustic fluctuations within the duct reach amplitudes
of up to several hundred Pascal, depending on the position of the gauze and the boundary conditions at the
ends of the duct. The frequency of fluctuation is in general close to one of the ‘‘organ pipe” eigenmodes of the
duct.

According to Rayleigh [2], instability in a thermo-acoustic system may occur ‘‘If heat be given to the air at
the moment of greatest condensation”, i.e. highest density. In simplest terms, this condition can be formulated
mathematically as follows:
Instability is possible; if

Z t0þ2p=x

t0

_Q0ðtÞp0ðtÞdt > 0; ð10Þ
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where _Q0ðtÞ denotes deviations from the mean rate of overall heat release _Q (units W) such that

_QðtÞ ¼ _Qþ _Q0ðtÞ, and similarly for pressure.

The Rayleigh criterion Eq. (10) expresses the idea that acoustic energy can be generated by the interaction
of unsteady heat release and acoustic fluctuations, if fluctuations of heat release and pressure, respectively, are
at least to some extent phase aligned. This is possible in the Rijke tube, because transfer of heat from the hot
wire mesh to the air passing through the mesh does not respond instantaneously, but with a certain time-lag s
to a change in the flow velocity u. Indeed, according to King [46,54,55], the heat flux from a hot wire with
length LW, diameter d and temperature T W to a gas flowing past it with velocity uðtÞ and temperature T

can be calculated as
_QðtÞ ¼ LWðT W � T Þ kþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk�.cv

d
2
juðt � sÞj

r !
: ð11Þ
Here �. is the mean density, cv the specific heat per unit mass at constant volume and k the heat conductivity of
the gas. According to Lighthill [55] the time lag may be estimated as
s 
 0:2
d
�u

ð12Þ
for frequencies f � 20�u=d, which holds for all frequencies regarded in this work.
For the fundamental acoustic eigenmode in a duct of length l with two open ends pð0Þ ¼ pðlÞ ¼ const:, see

Fig. 7, the pressure fluctuations lag behind the velocity fluctuations with a phase angle of p=2 in the upstream
half of the tube, while they are ahead of the velocity fluctuations with a phase angle of p=2 in the downstream
half. Thus, if the gauze is placed in the upstream half of the tube, the phase angles of heat release and pressure
oscillations both follow after the phase angle of the velocity fluctuations. For a typical Rijke tube, the time lag
s is smaller than one quarter period of the first eigenmode xs < p=2, thus, _Q0ðtÞ and p0ðtÞ are not exactly in
phase. However, as long as 0 < xs < p, heat release will be phase aligned to some extent with pressure and
vice versa. Thus, a self-excited oscillation results. The amplitude increases until non-linear effects cause the
augmentation to vanish and a limit cycle is reached. Non-linear effects include the heat release at high ampli-
tudes and losses at the ends of the tube [46].

If the heating mesh is placed in the downstream half of the tube, the Rijke tube does not exhibit self-excited
instability. Pressure oscillations are out of phase with heat release oscillations, fluctuations become attenuated.

For higher order modes, the analysis is more involved, but the fundamental mechanism is the same: if heat
release and pressure fluctuations lead to a positive Rayleigh integral (i.e., they are at least somewhat in phase),
the mode will be excited; if the Rayleigh integral is negative, the mode is damped.

5. Network model of the Rijke tube

In the following paragraphs, we will show how to model the Rijke tube depicted in Fig. 7 as a network of
two-port elements. For convenience, the model is constructed with the characteristic wave amplitudes f and g
(‘‘Riemann Invariants”) instead of the ‘‘primitive acoustic variables” velocity u0 and pressure p0. The wave
amplitudes f and g represent waves propagating in the down- and upstream direction, respectively. They
are related to the primitive acoustic variables as follows,
1, Inlet Heating Gauze Walls 4, outlet

popi

lu lh ld

uc uh

2   3

Fig. 7. A Rijke tube with two open ends and the heating wire gauze at 1/3 position.
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f ¼ 1

2

p0

�.�c
þ u0

� �
; g ¼ 1

2

p0

�.�c
� u0

� �
: ð13Þ
The upstream boundary condition of the network is an open end with constant pressure pi, thus p0 ¼ 0. From
Eq. (13) it follows that at node ‘‘1” of the network
f1 þ g1 ¼ 0: ð14Þ

The next element of the model is a straight duct of length lu. A downstream traveling wave f undergoes a
change in phase expf�ixlu=ccg as it travels with the speed of sound cc ¼

ffiffiffiffiffiffiffiffiffiffiffi
jRT c

p
from the inlet to the cold

side of the heat source. The index ‘‘c” stands for the ‘‘cold” side of the Rijke tube. The case for the wave g

traveling in the upstream direction is similar. Along the length of the duct, there is no interaction between
the waves f and g. The transfer matrix of the duct is readily obtained:
f2

g2

� �
¼ e�ikclu 0

0 eikclu

� �
f1

g1

� �
; ð15Þ
with the wave number kc � x=cc. Mean flow and dissipative effects have been neglected, as they are important
only at higher Mach numbers and when wave propagation over long distances is considered, respectively.
However, it would be possible to incorporate these without essential difficulty.

The extent of the heat source in longitudinal direction is negligible and it will be assumed that lh ¼ 0. The
pressures and velocities on the cold and hot sides of the wire gauze, respectively, can then be related to each
other via the Rankine–Hugoniot equations for conservation of mass, momentum and energy across a thin
heat source [56]. Linearising those for p0 and u0, coupling relations for the fluctuations across the heat source
can be derived (see Appendix A for the complete derivation):
p03 ¼ p02 � .cu
2
ch

u02
uc

þ
_Q0

_Q

 !
;

u03 ¼ u02 þ uch
_Q0

_Q
� p02

pc

 !
;

ð16Þ
with temperature excess h � ðT h=T c � 1Þ. Linearising _Q from Eq. (11) for small fluctuations (see Appendix B)
yields
_Q0

_Q
¼ u02e�ixs

k
ffiffiffiffi
uc

C1

q
þ 2uc

; ð17Þ
with C1 ¼ pkcv.d=2. Finally, one obtains the transfer matrix for the characteristic wave amplitudes across the
heat source
f3

g3

� �
¼ 1

2

A� Bþ C � D Aþ B� C � D

A� B� C þ D Aþ Bþ C þ D

� �
f2

g2

� �
; ð18Þ
with
A ¼ 1

n
; B ¼ M ch

n
1þ e�ixs

2þ k=
ffiffiffiffiffiffiffiffiffiffi
C1uc

p
� �

;

C ¼ 1þ he�ixs

2þ k=
ffiffiffiffiffiffiffiffiffiffi
C1uc

p
� �

; D ¼ cM ch:

ð19Þ
Here n � .hch=.ccc denotes the ratio of specific impedances and c � cp=cv the ratio of specific heats.
Downstream of the heat release follows another straight duct with length ld and thus
f4

g4

� �
¼ e�ikhld 0

0 eikhld

� �
f3

g3

� �
; ð20Þ
with the wave number kh � x=ch in the hot section of the duct.
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Finally, in order to close the system of equations, one more relation is required which is delivered by the
open end boundary condition at the downstream end of the Rijke tube:
3 Tes
effectiv
f4 þ g4 ¼ 0: ð21Þ

From Eqs. (14)–(21) for the unknowns ðf1; g1; f2; . . . ; g4Þ an 8� 8 system matrix S can be constructed. Then
the characteristic equation DetðSÞ ¼ 0 is solved for eigenmodes xn.

6. Numerical simulations

In order to establish proof of concept for the CNN approach, the method has been applied to the model of
a Rijke tube as discussed in the previous section.

The thermo-acoustic stability of a Rijke tube has been investigated previously with CFD by Hantschk and
Vortmeyer, using a two-dimensional mesh to resolve the flow and heat transfer at a heating strip with specified
wall temperature [11]. The rate of heat transfer to the fluid and in particular the response to a perturbation of
the flow velocity was computed by the CFD model from the governing equations for mass, momentum and
energy in viscous, wall-bounded, laminar flow.

For the present purposes it is not necessary to resolve flow and heat transfer at the gauze in this manner.
Instead, a one-dimensional model is set-up, with the heating gauze represented as a ‘‘lumped parameter”

source term for the enthalpy transport equation, cf. [36]. A time lag s between a change in velocity and the
strength of the enthalpy source term is implemented by storing the time series uðtÞ of velocity at a location
just upstream of the region of heat release in computer memory. The momentary rate of heat release _QðtÞ
is then computed as a function of the earlier velocity uðt � sÞ according to Eq. (11). Note with such a formu-
lation, the time lag s is not predicted by the CFD model, but an adjustable parameter.

6.1. Set-up of the CFD model

For the geometry considered, it is convenient to include the heat source and the downstream duct in the
CFD domain, while representing the upstream duct with a network model, see Fig. 8. In this way, one can
easily investigate the effect of upstream boundary condition and upstream duct length on stability (see below).

A typically dimensioned Rijke tube was chosen as a reference case. The computational domain for CFD is
divided into sections of length lc ¼ 10 mm and lh ¼ 495 mm upstream and downstream of the region of heat
release, respectively. All other parameters too, are set to represent a typical Rijke tube. The mean cold air
velocity at the inlet is set to �u ¼ 0:6 m=s and the inlet temperature to 293 K, while the mean heat release rate
is dimensioned in a way to generate a hot air temperature of 500 K to ensure sufficient acoustical excitation. A
typical wire diameter in a real Rijke tube is 0.5 mm, resulting in a time lag of s ¼ 1:67� 10�4 s according to
Eq. (12). In order to avoid discontinuities of flow variables and convergence difficulties, the heat source is not
implemented as a point source, but ‘‘smeared out” over a region of length l _Q ¼ 10 mm, i.e. 10 computational
cells, with maximal heat release rate in the center of that region. Except for unrealistically high modes, l _Q is
very short compared to the acoustical wave length and the heat source can be considered to be acoustically
compact, which was assumed in the derivation of the Rankine–Hugoniot relations Eq. (16).

The CFD solver Fluent used in this study does not allow one-dimensional computations, therefore a quasi-
one-dimensional mesh with uniform cell size of 1� 1 mm has been created. Consistent with the inviscid flow
model employed, slip boundary conditions are implemented at the upper and lower boundaries. Invoking the
‘‘pressure far-field” boundary condition of Fluent,3 an acoustically non-reflecting boundary condition (NBC)
is used for the inlet (left side) of the CFD model and constant pressure with p0 ¼ 0 (acoustically ‘‘open end”) is
assumed for the outlet (right side).

With the non-reflecting boundary condition, a self-excited instability cannot develop in the CFD mode (as
was the case in the work of Hantschk and Vortmeyer [11]). Therefore it is easy to generate a stationary
t simulations confirmed for 1-D geometries and Eulerian (inviscid) flow a reflection factor for this type of boundary condition of
ely 0. Other frequent problems of NBCs like drifting mean pressure due to an under-determined system were not observed either.
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Fig. 8. Configuration of Rijke tube with open/open boundary conditions and heating gauze placed one third of the tube length
downstream from the inlet. Relevant dimensions of the CFD and the network model are also shown above and below, respectively, of the
sketch of the tube. The ‘‘cut” between the CFD and the network domain is at x ¼ xC.
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solution for the inviscid Euler equations, which can then be used as a starting point for simulations with exter-
nal excitation.

6.2. Results of the simulations with external excitation

For computation of the OLTF, the inlet boundary of the CFD model is perturbed with a sum of discrete
harmonic acoustic signals4
4 In
fdðtÞ ¼
X

i

ai sinð2pfit þ /iÞ; ð22Þ
with frequencies fi ranging from 50 to 3000 Hz in steps of Df ¼ 50 Hz, amplitudes ai ¼ 6� 10�3 m=s and a
random phase offset /i (random number between 0 and 2p) for each frequency. The resulting amplitudes
for the primitive variables are 3� 10�3 m=s for u0 and 1.24 Pa for p0, respectively. Such low amplitudes in
the discrete signals were chosen because the peak amplitude in the overall signal (sum of sinusoids) even with
the use of a random phase lag reaches up to the 17-fold of the amplitudes of the discrete sinusoids. This way
the maximum peak amplitude for u0 is kept below 8.5% and thus below the critical value of one third of the
mean flow velocity, above which non-linear effects become significant according to Heckl [46].

The incoming characteristic wave fd as well as the outgoing signal gd have been determined via Eqs. (13) by
monitoring pressure p and axial velocity u at a location xC ¼ 4:5 mm, i.e. in the fifth cell of the computational
domain and upstream of the region of heat release. The simulated virtual time (and so the length of the time
series recorded) was of the order of 0.3 s, long enough to let transition effects from the onset of excitation leave
the domain and also long enough for a robust frequency analysis. The solver used for the simulations must not
have any discernible dissipation or dispersion of acoustic signals, which could be realized by application of the
coupled explicit solver option in Fluent. Both signals were then processed with fast Fourier transformation
(FFT) delivering amplitude and relative phase of each sinusoid present. It should be emphasized, that judging
from our experience the length of the time series so processed has to be a multiple of 1=Df to enable a numer-
ically stable and exact determination of the FFT. Due to the explicit solver chosen, the maximum possible time
step was determined by CFL ¼ 1 to avoid divergence. The resulting physical time step in the simulation was of
the order of 1:1� 10�6 s, leading to a Nyquist frequency of about 450 kHz, significantly above any frequency
of interest in the present context. On a 64-Bit dual-core processor computer with 2 GHz, 300,000 time steps –
corresponding to 0.3 s elapsed time – required about 2:30 h.
Fluent, the excitation is realized by perturbing the Mach number at the non-reflecting inlet.
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6.3. Open end on the left side

The eigenfrequencies of a Rijke tube with two open ends and the heating mesh positioned at 1/3 of the over-
all duct length were calculated with the CNN approach as explained above.

In order to compute the OLTF of the Rijke tube, one must compute how the output f̂ uðxÞ of the network
model is related to the input ĝuðxÞ. For the Rijke tube considered, the network sub-model is very simple: it is a
duct of length la ¼ 240:5 mm, as shown in Fig. 8, with an ‘‘open end” with p0 ¼ 0 as boundary condition. An
acoustic wave traveling from the ‘‘cut” at xC to the upstream end of the tube experiences a phase shift of p at
the open end before traveling back over the length la to the cut. Thus,
fuðxÞ ¼ guðxÞe�iðkc2laþpÞ: ð23Þ

With this method, the OLTF for the above mentioned frequencies can be calculated. Fig. 9 shows the OLTF
for the range of f ¼ 100–400 Hz (for the sake of clarity, the complete OLTF has not been shown here). The
frequency gap of 50 Hz between the signals is too large to decide whether the OLTF image curve passes to
the right or to the left of the critical point �1. Also, the frequency spacing is too large for curve fitting of
the OLTF and thus calculation of the eigenfrequencies. Nevertheless, the plot suggests that an eigenfrequency
should be found in the region between 250 Hz and 300 Hz. Hence a second simulation is set-up with external
forcing by a sum of sinusoids in the frequency range 250–300 Hz in steps of 10 Hz and an amplitude of
0.005 m/s. Amplitudes of the excitation signal sent into the domain were again kept low, in order to make sure
that the linear regime is not left.

From the outgoing signal, the OLTF is calculated with higher frequency resolution, see Fig. 9, right side.
Now one can deduce from the plot that an unstable eigenmode exists with frequency slightly above 270 Hz,
since the critical point �1 lies to the right of the OLTF curve. A 4th order polynomial fit G250ðxÞ is calculated
from the results of the second CFD simulation. This polynomial fit is an approximation of the function GðxÞ
in the area around the frequencies 250–300 Hz. With a root finding algorithm, the equation GðxÞ ¼ �1 can
now be solved for x (or physical frequency f respectively). In this way, the first unstable mode
f1 ¼ 271:51� 1:83i of the Rijke tube with a growth rate of 4.32% is found.

In order to validate the modes calculated with the CNN method, eigenfrequencies for the Rijke tube as
shown in Fig. 8 were determined by solving the characteristic equation of a network model, which can be con-
sidered to give exact solutions for the present configuration, while it is particularly easy to set-up, see Section
5. Apart from the values already mentioned in Section 6, the following parameter settings were used, which
can be derived from the inlet conditions and the heat flux: uc ¼ �u ¼ 0:6 m=s, uh ¼ 1:02m=s, pc ¼ 101325 Pa,
.c ¼ �. ¼ 1:205 kg=m3, .h ¼ 0:705 kg=m3, cc ¼ 343 m=s and ch ¼ 448 m=s. The result for the first eigenfre-
quency is fnw;1 ¼ 271:06� 1:67i with a growth rate of 3.94%. Thus, the results obtained with the new method
are validated with excellent accuracy.

This procedure is repeated for all frequencies where the OLTF passes the critical point.
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Fig. 9. OLTF of the Rijke tube. Left: large frequency spacing; Right: fine frequency spacing.
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A comparison of CNN vs. network model results is depicted in Fig. 10, left side (for completeness, the
numerical values of the eigenfrequencies are listed in Table D.1 in Appendix D). All eigenmodes calculated
with the network model have been identified by the CNN method. It is emphasized that the loci of the eigen-
modes depicted in the plot have two degrees of freedom, i.e. the frequency (in Hz) and the growth rate (in
percent per cycle). It is seen that the frequencies are in very good agreement, but also the growth rates from
the CNN method are close to the values calculated with the network model. The stability characteristics (sta-
ble/unstable corresponding to negative or positive growth rate) of every mode is captured correctly, with the
exception of the 9th mode at approx. 2450 Hz for the case with xh=l ¼ 1=3 and open end upstream boundary
(left graph). However, this small discrepancy is not very significant: the 9th mode is almost neutrally stable,
overall system behavior will be dominated by the unstable modes (1st, 3rd, 6th and 8th mode).

In experiment, the first eigenmode is usually observed in a Rijke tube. According to our analysis, this mode
is not the one with the highest growth rate (dominant unstable mode). The oversimplified treatment of the
boundaries in our validation test case can account for this result: Ideal acoustic boundary conditions with
a reflection factor jrj ¼ 1 were chosen, while it is well known that radiation losses of acoustic energy occur
at an open pipe end, and in particular so for higher frequencies. Without these losses, the third mode can have
a higher growth rate than the first mode, since the small time delay s suits better for the higher frequency in a
sense of bringing pressure and heat release fluctuations better in line. In reality, higher order modes will have
comparatively more losses and therefore smaller growth rates than the fundamental unstable mode.

6.4. Closed end on the left side

In a second set of computations, the modes for a Rijke tube with a closed inlet (fixed velocity) and an open
outlet were determined by both methods. The heating gauze is positioned in the center of a tube of length 1 m.
Thus, a length la ¼ 490:5 mm results for the analytical part of the OLTF computation. Furthermore, a differ-
ent upstream boundary condition is implemented. For the network model, Eq. (14) reads now
f1 � g1 ¼ 0: ð24Þ

For computation of the OLTF, Eq. (23) is simplified to
fuðxÞ ¼ guðxÞe�iðk2laÞ; ð25Þ

without the phase change of p. Note that this different acoustic boundary condition did not require any
changes to the computational set-up for the CFD part of the overall mode (see Fig. 11).

The eigenfrequencies for this problem set-up were approximately identified from CFD data obtained with
broad-band excitation in the frequency range from 50 to 3000 Hz. Note that for this part of the analysis, it is
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Fig. 11. Configuration of Rijke tube with closed/open boundary conditions and heating gauze placed in the middle of the duct. Relevant
dimensions of the CFD and the network model are also shown above and below, respectively, of the sketch of the tube. The ‘‘cut” between
the CFD and the network domain is at x ¼ xC.
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possible to re-use the data that were generated for analysis of the open-end-on-the-left configuration discussed
in the previous sub-section, because the CFD-part of the overall model is unchanged. Then additional simu-
lations with higher frequency resolution were performed to determine precise values for the eigenfrequency
and to determine stability. Again, results were validated by comparison with a network model, see Fig. 10,
right side (and Table D.2 in Appendix D). Again, all modes are correctly identified, the frequencies are cap-
tured very accurately and the deviations for the growth rates are very small.

7. Conclusions and outlook

A hybrid ‘‘CNN” method for the determination of thermo-acoustic system stability has been proposed,
combining tools and concepts from computational fluid dynamics, network models of linear acoustics and
control theory.

To establish proof of concept, the novel method has been applied to an idealized model of a Rijke tube. For
this model problem, numerical solutions of a low-order ‘‘network model” may be regarded as an exact refer-
ence solution. Both stable as well as unstable eigenmodes have been identified with CNN over a wide range of
frequencies for two configurations considered. The frequencies of all modes are captured very accurately, the
growth rates computed are in good agreement with results of the network model.

The proposed approach is particularly appropriate for applications where (1) the frequency response or the
transfer matrix of important elements cannot be determined and (2) the network approach is not adequate due
to geometrical complexities. CNN is also suitable for configurations with non-trivial acoustic boundary con-
ditions – in general a frequency-dependent, complex-valued impedance, which is not readily realized in a CFD
code – if that boundary is located in the network part of the system model. Moreover, the method can be used
for the determination of eigenfrequencies and growth rates of any kind of acoustic resonator, not only of
thermo-acoustic systems.

To summarize, the proposed CNN method for stability analysis has been validated successfully and possi-
ble areas of application have been identified. Ongoing work is concerned with more complicated configura-
tions, including turbulent combustion, use of large eddy simulation for the flow simulation, as well as
comparison against experimental results.
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Appendix A. Linearization of the Rankine–Hugoniot equations

For one-dimensional, compressible flow across a compact source of heat, the conservation equations for
mass, momentum and energy, respectively, are
qhuh ¼ qcuc; ðA:1Þ
ph þ qhu2

h ¼ pc þ qcu
2
c ; ðA:2Þ

hh þ
1

2
u2

h ¼ hc þ
1

2
u2

c þ q; ðA:3Þ
where q is specific intensity of the heat source (units J/kg).
For an ideal gas with p ¼ qRT and speed of sound c2 ¼ jRT , where j � cp=cv is the adiabatic exponent, one

finds that
c2 ¼ j
p
q

ðA:4Þ
and
ch

cc

� �2

¼ T h

T c

: ðA:5Þ
Enthalpy h � cpT ¼ cvT þ p=q and it follows that
h ¼ p
q

cp

cp � cv
¼ p

q
j

j� 1
: ðA:6Þ
Applying Eq. (A.6) to Eq. (A.3), the energy equation transforms to
ph

qh

j
j� 1

þ 1

2
u2

h ¼
pc

qc

j
j� 1

þ 1

2
u2

c þ q: ðA:7Þ
With Eq. (A.4) one writes
c2
h

j� 1
þ 1

2
u2

h ¼
c2

c

j� 1
þ 1

2
u2

c þ q; ðA:8Þ
and finally
c2
h

c2
c

¼
1
2
ðu2

c � u2
hÞ þ q

c2
c

ðj� 1Þ þ 1: ðA:9Þ
Assuming low Mach number (i.e. uc < uh � cc) and employing (A.4), this reduces to
c2
h

c2
c

¼ 1þ qqc

pc

ðj� 1Þ
j

þOðM2Þ: ðA:10Þ
With _q ¼ qcucq (heat released per unit area, units W=m2), one arrives at a relation between the speed of sound
of hot and cold gases
c2
h

c2
c

¼ 1þ _q
pcuc

ðj� 1Þ
j

þOðM2Þ: ðA:11Þ
In a similar manner, one finds a coupling condition for the velocities. Rearranging Eq. (A.2)
ph

qh

þ u2
h ¼

pc

qh

þ qc

qh

u2
c ; ðA:12Þ
employing mass conservation (A.1) and (A.4), one finds
c2
h

j
þ u2

h ¼
c2

cuh

juc

þ uhuc ðA:13Þ
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or
c2
h

c2
c

þ u2
h

c2
c

j� ucuh

c2
c

¼ uh

uc

; ðA:14Þ
which, inserting Eq. (A.11), finally yields
uh

uc

¼ 1þ _q
pcuc

ðj� 1Þ
j

þOðM2Þ: ðA:15Þ
Rearranging Eq. (A.2) yields for the ratio of pressures
ph

pc

¼ 1þ qcu
2
c � qhu2

h

pc

¼ 1þ j
u2

c

c2
c

� qc

pc

ucuh ¼ 1þ jM2
c 1� uh

uc

� �
: ðA:16Þ
Employing Eq. (A.15) results then in
ph

pc

¼ 1�M2
cðj� 1Þ _q

pcuc

þOðM4Þ: ðA:17Þ
Combining Eqs. (A.5) and (A.11), the ratio of temperatures can be expressed in terms of heat release and cold
gas conditions as well:
T h

T c

� 1 ¼ j� 1

j
_q

pcuc

: ðA:18Þ
Now these relations can be linearized for small fluctuations as they appear in acoustics. Beginning with pres-
sure, Eq. (A.17) will be rearranged (neglecting higher order Mach number terms) to
ph ¼ pc � ðj� 1Þ _quc

c2
c

: ðA:19Þ
All variables are then split up into mean values and fluctuations (products of fluctuations are neglected):
ph þ p0h ¼ pc þ p0c � ðj� 1Þ _quc þ _qu0c þ _q0uc

cc
2 þ 2ccc0c

: ðA:20Þ
To first order in fluctuating quantities, one writes (using Eq. (A.4))
ph þ p0h ¼ pc þ p0c �
ðj� 1Þ

j
qc

pc

ð _quc þ _qu0c þ _q0ucÞ: ðA:21Þ
Subtracting the balance equation of mean values leads to
p0h ¼ p0c �
ðj� 1Þ

j
qc

pc

ð _qu0c þ _q0ucÞ ðA:22Þ
and incorporating Eq. (A.18) one finally ends up with a relation between fluctuations of pressure on the cold
and hot gases side respectively:
p0h ¼ p0c � qc uc
2 T h

T c

� 1

� �
u0c
uc

þ _q0

_q

� �
: ðA:23Þ
In order to derive the linearized equation for velocity fluctuations, one starts by rearranging Eq. (A.15) to
uhpc ¼ ucpc þ _q
j� 1

j
ðA:24Þ
and doing the split up of mean values and fluctuations (neglecting products of fluctuations)
uhpc þ uhp0c þ u0hpc ¼ ucpc þ ucp0c þ u0cpc þ ð _qþ _q0Þ j� 1

j
: ðA:25Þ
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Again subtracting the mean balance Eq. (A.24) and rearranging results in
u0h ¼ u0c þ
p0c
pc

ðuc � uhÞ þ
_q0

pc

j� 1

j
: ðA:26Þ
Applying Eq. (A.24) on the mean values in the second term and expanding the third term, one can write
u0h ¼ u0c þ
p0c
pc

� _q
pc

j� 1

j

� �
þ j� 1

j
_q

pcuc

uc

_q0

_q
: ðA:27Þ
Rearrangement and application of Eq. (A.18) finally yields
u0h ¼ u0c þ
T h

T c

� 1

� �
uc

_q0

_q
� p0c

pc

� �
: ðA:28Þ
Appendix B. Linearization of the heat release

Combining constant terms, Eq. (11) can be simplified to
_q ¼ C2 kþ 2
ffiffiffiffiffiffiffiffiffiffi
C1uc

p� �
with uc P 0: ðB:1Þ
Partial differentiation for uc and multiplication with u0cðt � sÞ gives the fluctuation of _q (at time t)
_q0 ¼ C2

ffiffiffiffiffiffi
C1

p u0cðt � sÞffiffiffiffiffi
uc

p : ðB:2Þ
For harmonic fluctuations, u0cðt � sÞ can be expressed as u0ce
�ixs, thus the normalized linearized heat release

finally becomes
_q0

_q
¼ u0ce

�ixs

k
ffiffiffiffi
uc

C1

q
þ 2uc

: ðB:3Þ
Application of Eq. (B.3) to Eqs. (A.23) and (A.28), replacement of p0 and u0 by Riemann invariants f and g and
rearrangement results in the acoustic transfer matrix (18) for the heat release.

Appendix C. Semi-analytical test case

In this section, semi-analytical results for a simplified model of a Rijke tube are presented in order to illus-
trate that frequencies and growth rates of eigenmodes can indeed be deduced from a Nyquist diagram, even
for strong interaction between acoustic and heat release fluctuations with large interaction index n. Similar
treatments are found in [21,45,57].

Consider a generalized Rijke tube of lenght l with a compact heat source located at position xh ¼ l=3 as
shown in Fig. 7. A non-ideal acoustic reflection coefficient r ¼ �0:95 at the two ends x ¼ 0 and x ¼ l is intro-
duced in order to reduce the growth rates of unstable modes, which otherwise tend to be unreasonably large.
For simplicity, but without essential loss of generality, the case of vanishing Mach number, M ¼ 0, and equal
specific impedances at both sides of the heat source, n ¼ .hch=.ccc ¼ 1, is considered. Then the coupling rela-
tions for the characteristic wave amplitudes f ; g across the heat source simplify considerably. In agreement
with (18) and (19) one obtains for fluctuations of pressure and velocity, respectively:
f3 þ g3 ¼ f2 þ g2; ðC:1Þ
f3 � g3 ¼ ð1þ ne�ixsÞðf2 � g2Þ: ðC:2Þ
The interaction index n is not set to hð2þ k=
ffiffiffiffiffiffiffiffiffiffi
C1uc

p
Þ�1, as Eq. (19) would suggest, but is treated as an adjust-

able parameter in this sub-section. The coupling relations across the upstream and downstream ducts are em-
ployed as described above, see Eq. (13).

This simple model is most conveniently analysed in non-dimensional variables, with the propagation time
for acoustic waves l=c as the characteristic time scale of the problem. The eigenfrequencies xn of this system
can be computed as solutions to the following dispersion relation:
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e2ix � r2
	 


þ 1

2
ne�ixsðeix þ re2ix=3 � re4ix=3 � r2Þ ¼ 0: ðC:3Þ
Without a fluctuating heat source (n ¼ 0), and for open end reflection factors r ¼ �1, the eigenfrequencies
xn ¼ p; 2p; 3p; . . . corresponding to ‘‘organ pipe modes” are the obvious solutions to this equation. For time
lag s ¼ 0:1, and interaction index n ¼ 0:5 and n ¼ 5, respectively, the frequencies and growth rates of the first
four eigenmodes are shown in Fig. C.1.

Now it is described how the eigenfrequencies can be determined from the open-loop transfer function GðxÞ.
For the simplified model considered in this section, the OLTF can be formulated in closed form. If the ‘‘cut” of
the model is placed at position xc ¼ 2l=3, one obtains
GðxÞ ¼ �r2e�2ix 1þ n
2
ð1� r�1e2ix=3Þe�ixs

1þ n
2
ð1� re�2ix=3Þe�ixs

: ðC:4Þ
The Nyquist plots generated with this expression are shown in Fig. C.2, again for the two cases n ¼ 0:5 and
n ¼ 5, respectively, and r ¼ �0:95 at the duct terminations. Note that the OLTF-curve starts at the critical
point �1 for frequency x ¼ 0 and then circles the origin in the clockwise direction.

Frequencies xþn 2 R, for which the distance from the OLTF-curve and the critical point �1 reaches a local
minimum, can be identified by inspection of the Nyquist plot, followed by numerical minimization of
jGðxÞ þ 1j. Then the scaling factor r of the OLTF-mapping in the vicinity of a frequency xþn is determined as
rn ¼ lim
Dx!0

Gðxþn þ Dx=2Þ � Gðxþn � Dx=2Þ
Dx

���� ����: ðC:5Þ
The growth rate of the nth eigenmode is finally computed as the scaled distance of the OLTF-curve from the
critical point �1:
Cn ¼ �2p
jGðxþn Þ þ 1j

rxþn

� �
� 1: ðC:6Þ
The frequencies and growth rates of the first four eigenmodes obtained by this method are also shown in
Fig. C.1. Obviously, the agreement with the solutions of the dispersion relation C.3 is very good for small
absolute values of the growth rate, i.e. when the system is close to neutral stability, and the OLTF curve passes
close to the critical point �1. But even for relatively large absolute values of jCj > 0:1, which correspond to a
10% growth or decay of oscillation amplitude per cycle, the agreement for the frequency of the eigenmodes is
very good, while it is acceptable for the growth rate.

In Section 2.3 a second method for determining the frequency and growth rate of an eigenmode from the
OLTF has been described. This method is based on a polynomial fit P G;mðxÞ of the OLTF based on a number
of discrete collocation points in the vicinity of a frequency xþn . An approximate eigenfrequency x	n is then
determined by solving iteratively for P G;mðx	nÞ ¼ �1. The precise value of x	n will depend on the frequency
spacing Dx of the collocation points, and on the order m of the interpolating polynomial.
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In this study, results obtained by this approach from the expression (C.4) for the OLTF with values
Dx ¼ 0:5; 0:1; 0:02 and m ¼ 2; 3; 4 were compared against each other and against the eigenfrequencies xn

obtained from the geometrical interpretation of the Nyquist curve. With a frequency spacing Dx ¼ 0:5, one
cycle of the Nyquist curve is spanned by less than ten collocation points, which corresponds roughly to the
‘‘large frequency spacing” in Fig. 9. Even with such a coarse frequency resolution, the relative difference
for the eigenfrequencies was less than 1%, while the relative difference for the growth rate was as much as
50% for a second order polynomial and maximum 10% for a 4th order polynomial. With smaller frequency
spacings Dx ¼ 0:1, or Dx ¼ 0:02, the relative difference was less than 1% for both the frequencies and the
growth rates, no matter which order polynomial was used.

For analysis of CFD results with a Nyquist diagram presented in the main body of the paper, a frequency
spacing of 10 Hz (corresponding roughly to a non-dimensional value Dx ¼ 0:1) and fourth order polynomials
were used. The eigenfrequencies x	n obtained for the present semi-analytical case with settings Dx ¼ 0:1 and
m ¼ 4 are shown in Fig. C.1 The results indicate that the results presented in Section 6 would not change sig-
nificantly by further decreasing the frequency spacing, or by increasing the order of the interpolating
polynomial.
Table D.1
Comparison of frequencies and growth rates determined by the CNN method and a network model, respectively, for the case with an
acoustically open end on the upstream side

Mode Network model CNN

Frequency fnw Growth rate C (%) Frequency f Growth rate C (%)

1 271.1 � 1.67i 3.94 271.5 � 1.83i 4.32
2 543.1 + 5.75i �6.43 543.5 + 5.57i �6.24
3 811.0 � 7.54i 6.01 811.4 � 7.81i 6.24
4 1086.9 + 5.24i �2.98 1087.9 + 3.23i �1.85
5 1356.8 + 2.09i �0.96 1357.0 + 2.38i �1.10
6 1618.4 � 9.20i 3.63 1618.0 � 12.25i 4.87
7 1913.4 + 13.94i �4.47 1912.9 + 11.61i �3.74
8 2152.4 � 10.84i 3.21 2152.5 � 11.27i 3.34
9 2447.8 + 3.07i �0.78 2442.4 � 0.71i 0.18
10 2719.4 + 1.82i �0.42 2720.4 + 1.86i �0.43
11 2960.8 � 0.44i 0.09 2955.2 � 0.69i 0.15
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A concluding comment: from a practical point of view, the exact magnitude of the growth rate is not very
important if the absolute value of the growth rate of an eigenmode is very large. In that case, the correspond-
ing mode is either strongly damped and not important for overall system behavior, or the mode grows very
strongly, indicating that the system design needs to be significantly modified in order to become stable.

Appendix D. Tables of calculated frequencies

See Tables D.1 and D.2.
Table D.2
Comparison of frequencies and growth rates determined by the CNN method and a network model, respectively, for the case with a closed
end on the upstream side

Mode Network model CNN

Frequency fnw Growth rate C (%) Frequency f Growth rate C (%)

1 97.0 + 0.84i �5.27 97.0 + 0.83i �5.23
2 291.4 � 1.73i 3.81 291.7 � 1.85i 4.06
3 486.1 + 1.97i �2.52 486.1 + 1.98i �2.53
4 678.0 � 0.47i 0.44 680.7 � 1.11i 1.03
5 873.8 � 1.83i 1.32 873.8 � 1.75i 1.26
6 1071.0 + 5.21i �3.01 1071.7 + 3.93i �2.27
7 1258.7 � 7.56i 3.85 1258.8 � 7.94i 4.04
8 1463.9 + 9.50i �4.00 1464.2 + 8.29i �3.49
9 1644.1 � 8.86i 3.45 1643.8 � 10.43i 4.07
10 1853.2 + 6.51i �2.18 1853.4 + 6.27i �2.11
11 2036.3 � 3.02i 0.93 2034.6 � 6.28i 1.96
12 2233.4 � 0.66i 0.19 2234.1 � 0.30i 0.09
13 2437.4 + 3.66i �0.94 2433.4 + 5.78i �0.15
14 2609.2 � 3.81i 0.92 2609.5 � 3.69i 0.89
15 2836.7 + 2.36i �0.52 2832.8 + 1.45i �0.32
16 2992.5 � 0.02i 0.00 2990.3 + 0.09i �0.02
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